Source code for boxes.generators.organpipe

# Copyright (C) 2013-2018 Florian Festi
#
# Based on pipecalc by Christian F. Coors
# https://github.com/ccoors/pipecalc
#
#   This program is free software: you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License
#   along with this program.  If not, see <http://www.gnu.org/licenses/>.

from math import *

from boxes import *

pitches = ['c', 'c#', 'd', 'd#', 'e', 'f', 'f#', 'g', 'g#', 'a', 'a#' ,'b']

pressure_units = { 'Pa' : 1.0,
                   'mBar' : 100.,
                   'mmHg' : 133.322,
                   'mmH2O' : 9.80665,
}

[docs] class OrganPipe(Boxes): # Change class name! """Rectangular organ pipe based on pipecalc""" ui_group = "Unstable" # see ./__init__.py for names def getFrequency(self, pitch, octave, base_freq=440): steps = pitches.index(pitch) + (octave-4)*12 - 9 return base_freq * 2**(steps/12.) def getRadius(self, pitch, octave, intonation): steps = pitches.index(pitch) + (octave-2)*12 + intonation return 0.5 * 0.15555 * 0.957458**steps def getAirSpeed(self, wind_pressure, air_density=1.2): return (2.0 * (wind_pressure / air_density))**.5 def __init__(self) -> None: Boxes.__init__(self) self.addSettingsArgs(edges.FingerJointSettings, finger=3.0, space=3.0, surroundingspaces=1.0) """ air_temperature: f64, """ # Add non default cli params if needed (see argparse std lib) self.argparser.add_argument( "--pitch", action="store", type=str, default="c", choices=pitches, help="pitch") self.argparser.add_argument( "--octave", action="store", type=int, default=2, help="Octave in International Pitch Notation (2 == C)") self.argparser.add_argument( "--intonation", action="store", type=float, default=2.0, help="Intonation Number. 2 for max. efficiency, 3 max.") self.argparser.add_argument( "--mouthratio", action="store", type=float, default=0.25, help="mouth to circumference ratio (0.1 to 0.45). Determines the width to depth ratio") self.argparser.add_argument( "--cutup", action="store", type=float, default=0.3, help="Cutup to mouth ratio") self.argparser.add_argument( "--mensur", action="store", type=int, default=0, help="Distance in halftones in the Normalmensur by Töpfer") self.argparser.add_argument( "--windpressure", action="store", type=float, default=588.4, help="uses unit selected below") self.argparser.add_argument( "--windpressure_units", action="store", type=str, default='Pa', choices=pressure_units.keys(), help="in Pa") self.argparser.add_argument( "--stopped", action="store", type=boolarg, default=False, help="pipe is closed at the top") def render(self): t = self.thickness f = self.getFrequency(self.pitch, self.octave, 440) self.windpressure *= pressure_units.get(self.windpressure_units, 1.0) speed_of_sound = 343.6 # XXX util::speed_of_sound(self.air_temperature); // in m/s air_density = 1.2 air_speed = self.getAirSpeed(self.windpressure, air_density) i = self.intonation radius = self.getRadius(self.pitch, self.octave, i) * 1000 cross_section = pi * radius**2 circumference = pi * radius * 2.0 mouth_width = circumference * self.mouthratio mouth_height = mouth_width * self.cutup mouth_area = mouth_height * mouth_width pipe_depth = cross_section / mouth_width base_length = max(mouth_width, pipe_depth) jet_thickness = (f**2 * i**2 * (.01 * mouth_height)**3) / air_speed**2 sound_power = (0.001 * pi * (air_density / speed_of_sound) * f**2 * (1.7 * (jet_thickness * speed_of_sound * f * mouth_area * mouth_area**.5)**.5)**2) air_consumption_rate = air_speed * mouth_width * jet_thickness * 1E6 wavelength = speed_of_sound / f * 1000 if self.stopped: theoretical_resonator_length = wavelength / 4.0 resonator_length = (-0.73 * (f * cross_section *1E-6 - 0.342466 * speed_of_sound * mouth_area**.5 * 1E-3) / (f * mouth_area**.5 * 1E-3)) else: theoretical_resonator_length = wavelength / 2.0 resonator_length = (-0.73 * (f * cross_section * 1E-6 + 0.465753 * f * mouth_area**.5 * cross_section**.5 * 1E-6 - 0.684932 * speed_of_sound * mouth_area**.5 * 1E-3) / (f * mouth_area**.5 * 1E-3)) * 1E3 air_hole_diameter = 2.0 * ((mouth_width * jet_thickness * 10.0)**.5 / pi) total_length = resonator_length + base_length e = ["f", "e", edges.CompoundEdge(self, "fef", (resonator_length - mouth_height - 10*t, mouth_height + 10*t, base_length)), "f"] self.rectangularWall(total_length, pipe_depth, e, callback=[ lambda: self.fingerHolesAt(base_length-0.5*t, 0, pipe_depth-jet_thickness)], move="up") self.rectangularWall(total_length, pipe_depth, e, callback=[ lambda: self.fingerHolesAt(base_length-0.5*t, 0, pipe_depth-jet_thickness)], move="up") self.rectangularWall(total_length, mouth_width, "FeFF", callback=[ lambda: self.fingerHolesAt(base_length-0.5*t, 0, mouth_width)], move="up") e = [edges.CompoundEdge(self, "EF", (t*10, resonator_length - mouth_height - t*10)), 'e', edges.CompoundEdge(self, "FE", (resonator_length - mouth_height - t*10, t*10)), 'e'] self.rectangularWall(resonator_length - mouth_height, mouth_width, e, move="up") self.rectangularWall(base_length, mouth_width, "FeFF", move="right") self.rectangularWall(mouth_width, pipe_depth, "fFfF", callback=[ lambda:self.hole(mouth_width/2, pipe_depth/2, d=air_hole_diameter)], move="right") self.rectangularWall(mouth_width, pipe_depth - jet_thickness, "ffef", move="right")