Source code for boxes.generators.trafficlight

# Copyright (C) 2013-2016 Florian Festi
#
#   This program is free software: you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License
#   along with this program.  If not, see <http://www.gnu.org/licenses/>.

from boxes import *


class ShadyEdge(edges.BaseEdge):
    char = "s"

    def __call__(self, length, **kw):
        s = self.shades
        h = self.h
        a = math.atan(s/h)
        angle = math.degrees(a)
        for i in range(self.n):
            self.polyline(0, -angle, h / math.cos(a), angle+90)
            self.edges["f"](s)
            self.corner(-90)
            if i < self.n-1:
                self.edge(self.thickness)

    def margin(self) -> float:
        return self.shades

[docs] class TrafficLight(Boxes): # change class name here and below """Traffic light""" description = """The traffic light was created to visualize the status of a Icinga monitored system. When turned by 90°, it can be also used to create a bottle holder.""" def __init__(self) -> None: Boxes.__init__(self) self.addSettingsArgs(edges.FingerJointSettings) # remove cli params you do not need self.buildArgParser("h", "hole_dD") # Add non default cli params if needed (see argparse std lib) self.argparser.add_argument( "--depth", action="store", type=float, default=100, help="inner depth not including the shades") self.argparser.add_argument( "--shades", action="store", type=float, default=50, help="depth of the shaders") self.argparser.add_argument( "--n", action="store", type=int, default=3, help="number of lights") self.argparser.add_argument( "--upright", action="store", type=boolarg, default=True, help="stack lights upright (or side by side)") def backCB(self): t = self.thickness for i in range(1, self.n): self.fingerHolesAt(i*(self.h+t)-0.5*t, 0, self.h) def sideCB(self): t = self.thickness for i in range(1, self.n): self.fingerHolesAt(i*(self.h+t)-0.5*t, 0, self.depth) for i in range(self.n): self.fingerHolesAt(i*(self.h+t), self.depth-2*t, self.h, 0) def topCB(self): t = self.thickness for i in range(1, self.n): self.fingerHolesAt(i*(self.h+t)-0.5*t, 0, self.depth + self.shades) for i in range(self.n): self.fingerHolesAt(i*(self.h+t), self.depth-2*t, self.h, 0) def frontCB(self): self.hole(self.h/2, self.h/2, self.h/2-self.thickness) def wall(self, h1, h2, w, edges="ffef", callback=None, move="", label=""): edges = [self.edges.get(e, e) for e in edges] edges += edges # append for wrapping around overallwidth = w + edges[-1].spacing() + edges[1].spacing() overallheight = max(h1, h2) + edges[0].spacing() + edges[2].spacing() if self.move(overallwidth, overallheight, move, before=True, label=label): return a = math.atan((h2-h1)/float(w)) angle = math.degrees(a) self.moveTo(edges[-1].spacing(), edges[0].margin()) for i, l in [(0, w), (1, h2)]: self.cc(callback, i, y=edges[i].startwidth() + self.burn) edges[i](l) self.edgeCorner(edges[i], edges[i + 1], 90) self.corner(angle) self.cc(callback, i, y=edges[2].startwidth() + self.burn) edges[2](w / math.cos(a)) self.corner(-angle) self.edgeCorner(edges[2], edges[2 + 1], 90) self.cc(callback, i, y=edges[3].startwidth() + self.burn) edges[3](h1) self.edgeCorner(edges[3], edges[3 + 1], 90) self.move(overallwidth, overallheight, move, label=label) def addMountH(self, width, height): ds = self.hole_dD[0] if len(self.hole_dD) < 2: # if no head diameter is given dh = 0 # only a round hole is generated y = height - max (self.thickness * 1.25, self.thickness * 1.0 + ds) # and we assume that a typical screw head diameter is twice the shaft diameter else: dh = self.hole_dD[1] # use given head diameter y = height - max (self.thickness * 1.25, self.thickness * 1.0 + dh / 2) # and offset the hole to have enough space for the head dx = width x1 = dx * 0.125 x2 = dx * 0.875 self.mountingHole(x1, y, ds, dh, 90) self.mountingHole(x2, y, ds, dh, 90) def addMountV(self, width, height): if self.hole_dD[0] < 2 * self.burn: return # no hole if no diameter is given ds = self.hole_dD[0] if len(self.hole_dD) < 2: # if no head diameter is given dh = 0 # only a round hole is generated x = max (self.thickness * 2.75, self.thickness * 2.25 + ds) # and we assume that a typical screw head diameter is twice the shaft diameter else: dh = self.hole_dD[1] # use given head diameter x = max (self.thickness * 2.75, self.thickness * 2.25 + dh / 2) # and offset the hole to have enough space for the head dy = height y1 = self.thickness * 0.75 + dy * 0.125 y2 = self.thickness * 0.75 + dy * 0.875 self.mountingHole(x, y1, ds, dh, 180) self.mountingHole(x, y2, ds, dh, 180) def render(self): # adjust to the variables you want in the local scope d, h, n = self.depth, self.h, self.n s = self.shades t = self.thickness th = n * (h + t) - t self.addPart(ShadyEdge(self, None)) # back if self.upright: self.rectangularWall(th, h, "FFFF", callback=[self.backCB, self.addMountV(th, h)], move="up", label="back") else: self.rectangularWall(th, h, "FFFF", callback=[self.backCB, self.addMountH(th, h)], move="up", label="back") if self.upright: # sides self.rectangularWall(th, d, "fFsF", callback=[self.sideCB], move="up", label="left") self.rectangularWall(th, d, "fFsF", callback=[self.sideCB], move="up", label="right") # horizontal Walls / blinds tops e = edges.CompoundEdge(self, "fF", (d, s)) e2 = edges.CompoundEdge(self, "Ff", (s, d)) for i in range(n): self.rectangularWall(h, d+s, ['f', e, 'e', e2], move="right" if i<n-1 else "right up", label="horizontal Wall " + str(i+1)) else: # bottom self.rectangularWall(th, d, "fFeF", callback=[self.sideCB], move="up", label="bottom") # top self.rectangularWall(th, d+s, "fFeF", callback=[self.topCB], move="up", label="top") # vertical walls for i in range(n): self.wall(d, d+s, h, move="right" if i<n-1 else "right up", label="vertical wall " + str(i+1)) # fronts for i in range(n): self.rectangularWall(h, h, "efef", callback=[self.frontCB], move="left" if i<n-1 else "left up", label="front " + str(i+1)) if self.upright: # bottom wall self.rectangularWall(h, d, "ffef", move="up", label="bottom wall") else: # vertical wall self.wall(d, d+s, h, move="up", label="vertical wall") # Colored windows for i in range(n): self.parts.disc(h-2*t, move="right", label="colored windows")