# Copyright (C) 2013-2016 Florian Festi
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from boxes import *
class MotorEdge(edges.BaseEdge):
# def margin(self) -> float:
# return 30.0
def __call__(self, l, **kw):
self.polyline(
l - 165, 45,
25 * 2 ** 0.5, -45,
60, -45,
25 * 2 ** 0.5, 45,
55)
class OutsetEdge(edges.OutSetEdge):
def startwidth(self) -> float:
return 20.0
class HangerEdge(edges.BaseEdge):
char = "H"
def margin(self) -> float:
return 40.0
def __call__(self, l, **kw):
self.fingerHolesAt(0, -0.5 * self.thickness, l, angle=0)
w = self.settings
self.polyline(0, -90,
22 + w, 90,
70, 135,
2 ** 0.5 * 12, 45,
35, -45,
2 ** 0.5 * 0.5 * w, -90,
2 ** 0.5 * 0.5 * w, -45,
l - 28, 45,
2 ** 0.5 * 5, 45, 5, -90)
class RollerEdge(edges.BaseEdge):
def margin(self) -> float:
return 20.0
def __call__(self, l, **kw):
m = 40 + 100
self.polyline((l - m) / 2.0, -45,
2 ** 0.5 * 20, 45,
100, 45,
2 ** 0.5 * 20, -45,
(l - m) / 2.0)
class RollerEdge2(edges.BaseEdge):
def margin(self) -> float:
return self.thickness
def __call__(self, l, **kw):
a = 30
f = 1 / math.cos(math.radians(a))
self.edges["f"](70)
self.polyline(0, a, f * 25, -a, l - 190, -a, f * 25, a, 0)
self.edges["f"](70)
[docs]
class Rotary(Boxes):
"""Rotary Attachment for engraving cylindrical objects in a laser cutter"""
ui_group = "Unstable"
def __init__(self) -> None:
Boxes.__init__(self)
self.addSettingsArgs(edges.FingerJointSettings)
self.argparser.add_argument(
"--diameter", action="store", type=float, default=72.,
help="outer diameter of the wheels (including O rings)")
self.argparser.add_argument(
"--rubberthickness", action="store", type=float, default=5.,
help="diameter of the strings of the O rings")
self.argparser.add_argument(
"--axle", action="store", type=float, default=6.,
help="diameter of the axles")
self.argparser.add_argument(
"--knifethickness", action="store", type=float, default=8.,
help="thickness of the knives in mm. Use 0 for use with honey comb table.")
self.argparser.add_argument(
"--beamwidth", action="store", type=float, default=32.,
help="width of the (aluminium) profile connecting the parts")
self.argparser.add_argument(
"--beamheight", action="store", type=float, default=7.1,
help="height of the (aluminium) profile connecting the parts")
def mainPlate(self):
# Motor block outer side
t = self.thickness
d = self.diameter
a = self.axle
bw, bh = self.beamwidth, self.beamheight
hh = 0.5 * d + bh + 2 # hole height
self.hole(1.0 * d, hh, a/2.)
#self.hole(1.0 * d, hh, d/2.)
self.hole(2.0 * d + 5, hh, a/2.)
#self.hole(2.0 * d + 5, hh, d/2.)
# Main beam
self.rectangularHole(1.5*d+2.5, 0.5*bh, bw, bh)
def frontPlate(self):
# Motor block inner side with motor mount
t = self.thickness
d = self.diameter
a = self.axle
bw, bh = self.beamwidth, self.beamheight
hh = 0.5 * d + bh + 2 # hole height
self.hole(1.0 * d, hh, a/2.)
#self.hole(1.0 * d, hh, d/2.)
self.hole(2.0 * d + 5, hh, a/2.)
#self.hole(2.0 * d + 5, hh, d/2.)
# Main beam
self.rectangularHole(1.5 * d+2.5, 0.5 * bh, bw, bh)
# Motor
mx = 2.7 * d + 20
self.rectangularHole(mx, hh, 36 + 20, 36, r=36 / 2.0)
for x in (-1, 1):
for y in (-1,1):
self.rectangularHole(mx+x * 25, hh + y * 25, 20, 4, r=2)
def link(self, x, y, a, middleHole=False, move=None):
t = self.thickness
overallwidth = x + y
overallheight = y
ra = a / 2.0
if self.move(overallwidth, overallheight, move, before=True):
return
self.moveTo(y / 2.0, 0)
self.hole(0, y / 2., ra)
self.hole(x, y / 2., ra)
if middleHole:
self.hole(x / 2., y / 2., ra)
self.edge(10)
self.edges["F"](60)
self.polyline(x - 70, (180, y / 2.), x, (180, y / 2.))
self.move(overallwidth, overallheight, move)
def holderBaseCB(self):
bw, bh = self.beamwidth, self.beamheight
self.hole(20, self.hh - 10, self.a / 2)
self.rectangularHole(self.hl - 70, self.hh - 10, 110, self.a, r=self.a / 2)
self.rectangularHole(self.hl / 2, 0.5 * bh, bw, bh)
def holderTopCB(self):
self.fingerHolesAt(0, 30 - 0.5 * self.thickness, self.hl, 0)
d = self.diameter / 2.0 + 1
# XXX
y = -0.5 * self.diameter + self.th + self.hh - self.beamheight - 2.
self.hole(self.hl / 2 + d, y, self.axle / 2.0)
self.hole(self.hl / 2 - d, y, self.axle / 2.0)
self.hole(self.hl / 2 + d, y, self.diameter / 2.0)
self.hole(self.hl / 2 - d, y, self.diameter / 2.0)
def render(self):
# adjust to the variables you want in the local scope
t = self.thickness
d = self.diameter
a = self.a = self.axle
bw, bh = self.beamwidth, self.beamheight
# self.spacing = 0.1 * t
# Change settings of default edges if needed. E.g.:
self.edges["f"].settings.setValues(self.thickness, space=2, finger=2,
surroundingspaces=1)
if self.knifethickness:
self.addPart(HangerEdge(self, self.knifethickness))
else:
self.edges["H"] = self.edges["F"]
# Holder
hw = self.hw = 70.
hh = self.hh = 35. + bh
hl = self.hl = 240
# Base
self.rectangularWall(hl, hh, edges="hfef", callback=[self.holderBaseCB, None,
lambda: self.rectangularHole(hl / 2 + 50, hh - t / 2 - 1,
60, t + 2)], move="up")
self.rectangularWall(hl, hh, edges="hfef", callback=[self.holderBaseCB], move="up")
self.rectangularWall(hl, hw, edges="ffff", callback=[lambda: self.hole(hl / 2 - 16 - 20, 25, 5)], move="up")
with self.saved_context():
self.rectangularWall(hw, hh, edges="hFeF", callback=[
lambda: self.hole(hw / 2, hh - 20, 4)],move="right")
self.rectangularWall(hw, hh, edges="hFeF", move="right")
# Top
th = self.th = 30
# sides
self.rectangularWall(hw + 20, th, edges="fFeF", move="right",
callback=[lambda: self.fingerHolesAt(20 - 0.5 * t, 0, th)])
self.rectangularWall(hw + 20, th, edges="fFeF", move="right",
callback=[lambda: self.fingerHolesAt(20 - 0.5 * t, 0, th)])
self.rectangularWall(hw, hh, edges="hFeF", move="up only")
outset = OutsetEdge(self, None)
roller2 = RollerEdge2(self, None)
self.rectangularWall(hl, th, edges=[roller2, "f", "e", "f"], callback=[
lambda: self.hole(20, 15, a / 2), None, lambda: self.rectangularHole(50, th - 15, 70, a, r=a / 2)],
move="up")
self.rectangularWall(hl, th, edges=[roller2, "f", "e", "f"], callback=[
lambda: self.hole(20, 15, a / 2), None, lambda: self.rectangularHole(50, th - 15 - t, 70, a, r=a / 2)],
move="up")
self.rectangularWall(hl, th, edges=[roller2, "f", RollerEdge(self, None), "f"], callback=[
self.holderTopCB], move="up")
self.rectangularWall(hl, 20 - t, edges="feee", move="up")
tl = 70
self.rectangularWall(tl, hw + 20, edges="FeFF", move="right",
callback=[None, lambda: self.fingerHolesAt(20 - 0.5 * t, 0, tl)])
self.rectangularWall(tl, hw + 20, edges="FeFF", move="",
callback=[None, lambda: self.fingerHolesAt(20 - 0.5 * t, 0, tl)])
self.rectangularWall(tl, hw + 20, edges="FeFF", move="left up only",
callback=[None, lambda: self.fingerHolesAt(20 - 0.5 * t, 0, tl)])
# Links
self.link(hl - 40, 25, a, True, move="up")
self.link(hl - 40, 25, a, True, move="up")
self.link(hl - 40, 25, a, True, move="up")
self.link(hl - 40, 25, a, True, move="up")
with self.saved_context():
self.rectangularWall(hw - 2 * t - 2, 60, edges="efef", move="right")
self.rectangularWall(hw - 4 * t - 4, 60, edges="efef", move="right")
# Spindle auxiliaries
self.parts.wavyKnob(50, callback=lambda: self.nutHole("M8"), move="right")
self.parts.wavyKnob(50, callback=lambda: self.nutHole("M8"), move="right")
self.rectangularWall(hw - 2 * t - 4, 60, edges="efef", move="up only")
with self.saved_context():
slot = edges.SlottedEdge(self, [(30 - t) / 2, (30 - t) / 2], slots=15)
self.rectangularWall(30, 30, edges=["e", "e", slot, "e"],
callback=[lambda: self.hole(7, 23, self.axle / 2)], move="right")
self.rectangularWall(30, 30, edges=["e", "e", slot, "e"],
callback=[lambda: self.hole(7, 23, self.axle / 2)], move="right")
leftover = (hw - 6 * t - 6 - 20) / 2.0
slot = edges.SlottedEdge(self, [leftover, 20, leftover], slots=15)
self.rectangularWall(hw - 4 * t - 6, 30, edges=[slot, "e", "e", "e"],
callback=[lambda: self.hole((hw - 4 * t - 6) / 2., 15, 4)], move="right")
for i in range(3):
self.rectangularWall(20, 30,
callback=[lambda: self.nutHole("M8", 10, 15)], move="right")
self.rectangularWall(20, 30,
callback=[lambda: self.hole(10, 15, 4)], move="right")
self.rectangularWall(30, 30, move="up only")
self.h = h = bh + 2 + 1.0 * d # height of outer pieces
# Other side
if self.knifethickness:
ow = 10
self.rectangularWall(3.6 * d, h, edges="hfFf", callback=[
lambda:self.rectangularHole(1.8 * d, 0.5 * bh, bw, bh)],
move="up")
self.rectangularWall(3.6 * d, h, edges="hfFf", callback=[
lambda:self.rectangularHole(1.8 * d, 0.5 * bh, bw, bh)],
move="up")
self.rectangularWall(3.6 * d, ow, edges="ffff", move="up")
self.rectangularWall(3.6 * d, ow, edges="ffff", move="up")
with self.saved_context():
self.rectangularWall(ow, h, edges="hFFH", move="right")
self.rectangularWall(ow, h, edges="hFFH", move="right")
self.rectangularWall(ow, h, edges="hFFH", move="up only")
# Motor block
mw = 40
self.rectangularWall(3.6 * d, h, edges=["h", "f", MotorEdge(self, None),"f"], callback=[self.mainPlate], move="up")
self.rectangularWall(3.6 * d, h, edges=["h", "f", MotorEdge(self, None),"f"], callback=[self.frontPlate], move="up")
self.rectangularWall(3.6 * d, mw, edges="ffff", move="up")
with self.saved_context():
self.rectangularWall(mw, h, edges="hFeH", move="right")
self.rectangularWall(mw, h, edges="hFeH", move="right")
self.pulley(88, "GT2_2mm", r_axle=a / 2.0, move="right")
self.pulley(88, "GT2_2mm", r_axle=a / 2.0, move="right")
self.rectangularWall(mw, h, edges="hFeH", move="up only")
self.axle = 19
for i in range(3):
self.parts.disc(self.diameter - 2 * self.rubberthickness,
hole=self.axle, move="right")
self.parts.disc(self.diameter - 2 * self.rubberthickness,
hole=self.axle, move="up right")
for i in range(3):
self.parts.disc(self.diameter - 2 * self.rubberthickness,
hole=self.axle, move="left")
self.parts.disc(self.diameter - 2 * self.rubberthickness,
hole=self.axle, move="left up")
for i in range(3):
self.parts.disc(self.diameter - 2 * self.rubberthickness + 4,
hole=self.axle, move="right")
self.parts.disc(self.diameter - 2 * self.rubberthickness + 4,
hole=self.axle, move="right up")